

Alternative Energy Technologies

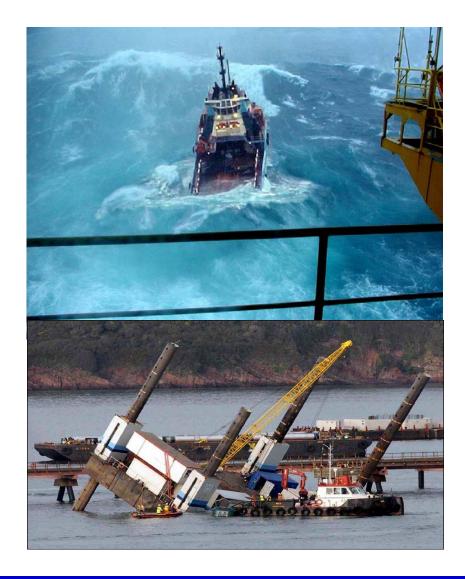
John Oakey Chris Bagley

Making the UK the best place to do business in materials

- Wave and tidal
- Wind
- Biomass
- Hydrogen
- Fuel Cells
- Solar (PV)

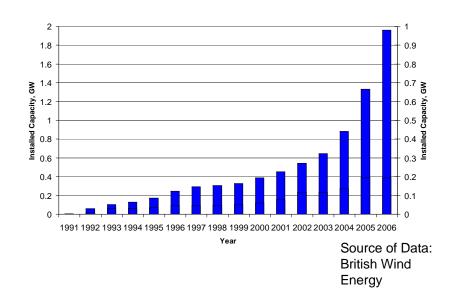
Capable of delivering significant amounts of power

Many variants under development


Devices in development or at sea:

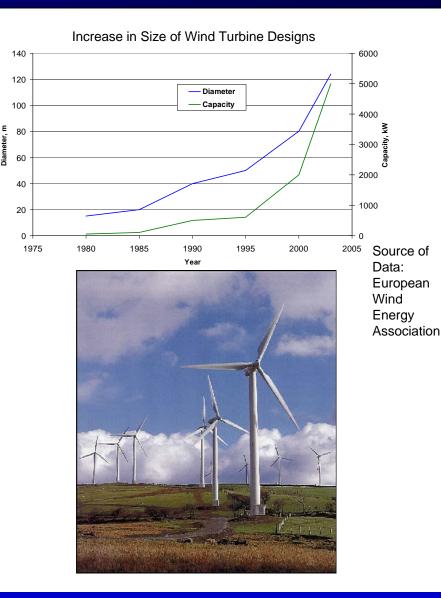
- Nodding duck
- Pelamis 750 kW
- Seaflow 300 kW
- Seagen 1500 kW
- Swan Turbines
- Limpet 500 kW
- Sea Snail 100 kW
- TidEl
- Archimedes Wave Swing
- Open Hydro 250 kW

Wave and Tidal-Materials Challenges


- Coatings abrasion resistance, anti-fouling, corrosion resistance
- Advanced magnetic materials (low wear)
- Lubricants
- Concrete structures
- Seals
- Materials selection criteria
- Composites and ceramics
- Reliability/risk analysis

Wind Turbines

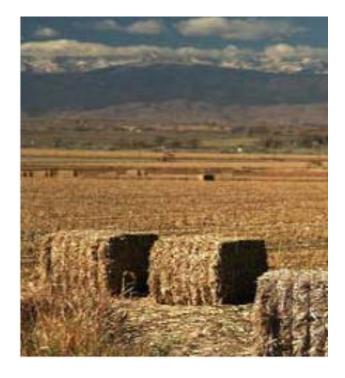
- •Average size of wind turbines increasing
- •Turbine capacity to blade diameter ratio increasing
- •Wider operating window variable pitch/constant speed designs
- More advanced materials
 (wood glass fibre reinforced plastic GRP – carbon fibres)
- Improved manufacturing and smarter use of materials
- •Two piece blades



-Wind turbine capacity has increased seven-fold over last ten years.
-Wind as a percentage of total generating capacity: 0.42% 1997, 1.18% 2004
-Wind farms: (2007) 149 operational (2.1GW), 38 under construction (1.4GW),
- 102 consented (3.8GW), 232 in planning (10.9GW), Total 18.2GW

Wind Turbines-Materials Challenges

- Development of materials / designs / processing techniques e.g. sandwich constructions, joints, FRP pre-forming, etc.
- Development of test and modelling methods for materials characterisation for harsh environments
- Development and application of NDI techniques for accurate / rapid defect detection
- Development of standards and certification procedures
- Development of test and modelling methods for lifecycle analysis/fatigue performance of constituent materials, subcomponents and major structures i.e. blades
- Structural health monitoring techniques


Biomass

Energy Materials

Biomass is used

- -in co-firing as a low-C substitute for fossil fuels, and
 -in dedicated systems using waste
- biomass and energy crops
- Uses adapted 'conventional' heat and power technologies
- Significant quantities are available for small-to-medium plants from 'waste' sources
- Contains contaminants which can cause fouling and corrosion of system components
- Potential for significant growth

- Agricultural/domestic waste
 - wood chips, sawdust, bark, straw, rice husks, bagasse, coconut fibre, sewage sludge, etc.
- Energy crops
 - willow, miscanthus, eucalyptus, etc.

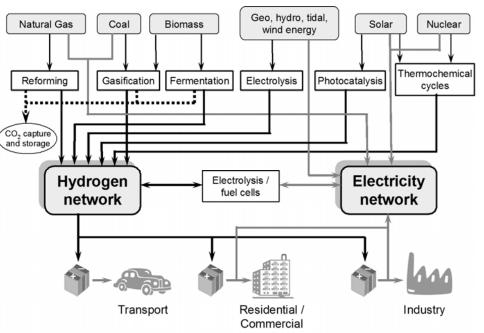
Biomass-Materials Challenges

- Improved alloys and coatings for heat exchange and gas turbine/gas engines
- Life prediction modelling for heat exchangers to optimise maintenance and repair
- Monitoring of corrosion and contaminants in order to provide early warning of problems
- Improved repair/refurbishment procedures

Fouling of a superheater in a biomass boiler

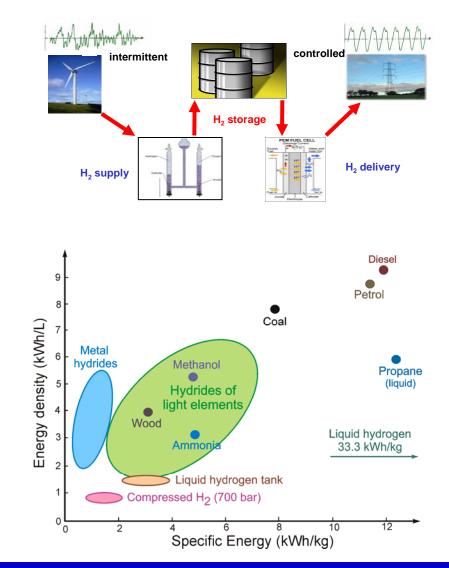
X20

T22


Corrosion of superheater materials in a Swedish biomass plant

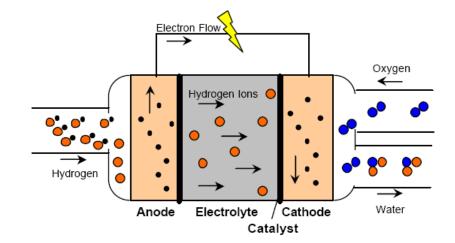
- An important, versatile energy carrier for the future for power and transport applications
- Can be derived from multiple sources
 - Fossil fuels
 - Nuclear

Materials


- Renewables
- Safety in use and storage are key issues

Hydrogen-Materials Challenges

- New materials particularly for H₂ storage and H₂ sensors
- Catalysts for reduced cost H₂ production
- Membranes and separation media to reduce the cost of meeting the hydrogen purity requirements of fuel cells, and other applications.
- Advanced Instrumentation and Characterisation Techniques.
- Modelling of the interaction of H₂ with materials, embrittlement, and electron transfer processes in solids to enhance photocatalysts and photoelectrochemical processes


Fuel Cells

- A key energy conversion technology which can operate with fossil fuels and H₂
- Being developed for energy and transport applications
- High efficiency


Materials

Energy Materials

 Can be integrated into advanced cycles with gas turbines, etc.

PEM Stack

PEM Fuel Cell powered bus

Fuel Cells- Materials Challenges

- Scale-up efficient processes providing low cost products
- Understanding of failure mechanisms and durability issues
- Fabrication techniques and manufacturing consistency
- Inspection techniques to ensure the supply of high quality components
- New and improved existing materials - increased conductivity for cell and stack components
- Environmentally stable materials

Fuel Cell Type	Operation Temp. (°C)	Features	Principal Application
Polymer Electrolyte Membrane (<i>PEMFC</i>)	60 - 80	High power density, Pt catalyst, must be kept wet, poisoned by CO	Mobile power
Alkaline (<i>AFC</i>)	50 - 200	High power density, cannot tolerate CO ₂	Space flight
Phosphoric acid (<i>PAFC</i>)	~ 220	Medium power density, Pt catalyst sensitive to CO	Stationary power
Direct Methanol (<i>DMFC</i>)	60 – 120	Medium power density, , high Pt content	Electronics - Laptops mobile phones
Molten Carbonate (<i>MCFC</i>)	~ 650	Low power density, Ni Catalyst, needs CO_2 recycle	Stationary power
Solid Oxide (SOFC)	500 - 1000	Medium power density, accepts CO as a fuel	Stationary power

The six principal fuel cell types.

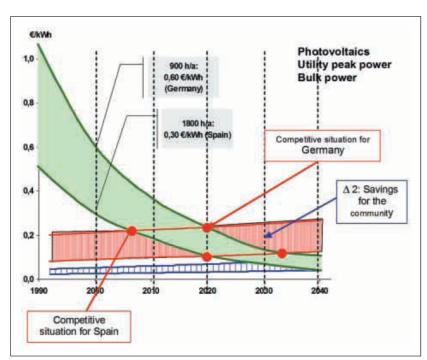
- Versatile energy technology, suitable for many built environment and other applications
- Costs are 'up-front', with low on-going operational and maintenance costs
- Suitable for mass production
- Critically dependent on materials technology
- Various technology options
 - crystalline silicon technology
 - types of thin-film technology including amorphous silicon, compound semiconductors (GaInP/GaAs) & polycrystalline compound semiconductor (CIGS, CdTe)
 - dye-sensitised (Gratzel) cells
 - nanocrystalline and polymer technologies

Solar - Photovoltaic

Eden Centre, Cornwall

Sharp module factory, Wrexham Manufacturing 220 MW per year for the European market.

Energy Materials Solar-Photovoltaic- Materials Challenges


- Low cost materials
 - quartz to Si and advanced crystal & Si ribbon growth
 - plastic optics for concentrators
 - thermal conductors

Improved design

- rear contact cells for mass production & high efficiency cell structures - crystalline Si
- cell concepts for flexible substrates for thin film PV
- improved concentrators for wide angles

Improved, sustainable materials

- module materials for crystalline Si (e.g. polymers) for improved stability and life
- alternative transparent conducting oxides
- improved deposition technologies thin film PV
- low band-gap semiconducting polymers & sensitiser dyes for excitonic PV
- anti-reflective coatings for thermal
- Durability and life modelling of materials
- Improved fabrication
 - large area modules and high volumes
 - testing and QC procedures

Projected Reduction in PV Energy costs in Europe. Reproduced from the European Photovoltaic Industry Association (EPIA) Roadmap.

UK Skills and Capabilities

- Vary depending on the particular technology, e.g.
 - for fuel cells UK has leading-edge manufacturers (e.g. Johnson Matthey Fuel Cells & Rolls-Royce Fuel Cells)
 - for wind energy UK strength lies in the deployment of technologies from overseas, e.g. offshore wind farms
- The UK has well established capabilities in:
 - manufacturing
 - servicing
 - system integration
 - technical consultancy
- Also, UK strength lies in the strong links between universities, Research & Technology Organisations (RTOs) and industry

R & D Priorities

- Structural Materials
- Functional Materials
- Materials processing, fabrication and integration
- Environmental Resistance and Protective Systems
- Life Cycle Modelling

R & D Priorities

Generic Material Requirements

- Condition monitoring and 'smart sensors'
- Development of 'field deployable' non-destructive evaluation (NDE) techniques
- Development of standards and certification procedures
- Testing and characterisation procedures
- Repair, rejuvenation and recycling of expensive materials
- Investigation into fundamental failure mechanisms in advanced materials

- Alternative energy technologies have a key role to play in overcoming climate change – and all have a role
- Materials technology in all its forms is critical if these technologies are to become commercially available at the time they are most needed

- Wave and Tidal R Martin (MERL) with support from M Gower (NPL), Supergen Marine
- Wind Power M Gower (NPL) with support from R Martin (MERL), C Bagley (TWI), S Court (NAMTEC)
- Biomass Technologies J Oakey (Cranfield) with support from P Thornley (Manchester University), M Kelly (Scottish Assoc. for Marine Science), and members of Supergen Bioenergy
- Hydrogen Peter Edwards (University of Oxford), V.L. Kuznetsov (University of Oxford), M. Gersch (University of Oxford), S. Ellis (Johnson Matthey Plc), Z.X. Guo (Queen Mary, University of London), R Pargeter (TWI), UK Sustainable Hydrogen Energy Consortium
- Fuel Cells J Kilner (Imperial College) with support from J McCarney (Johnson Matthey Fuel Cells), G J Wright (Rolls-Royce Fuel Cell Systems Limited), A R Chapman (Ceramic Fuel Cells (Europe) Limited), members of Fuel Cells UK
- Solar S Irvine (University of Bangor), PV Supergen, G Butler (Sharp UK), N Mason (BP Solar), P Stillman (ICP Solar), M Scott (IQE Europe), J Durant (Imperial College) and members of PV Supergen